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ABSTRACT

What

We explore the feasibility of using eye
gaze data to quantify the expertise of
software developers during bug fixing
tasks.

How
Several sequential analysis techniques
were used from TraMineR to analyze
developer expertise.

Results

Can quantify the expertise of software
developers during bug fixing tasks that
require changing multiple source code
elements for a solution.

DATA
Data Collection Goal: To investigate the detailed

navigation behavior of developers for real-
istic change tasks. [1]

Participants: 12 professional developers at
ABB Inc. and 10 computing students at
Youngstown State University.

Tasks: Find and fix three bugs in the JabRef repos-
itory based on real-world bug reports.

Data Collection Tool: iTrace, an Eclipse plugin,
works with an eye-tracker to capture eye
gaze fixation data on source code elements.

Sequence Format: A fixation contains many
data fields, but we only use fully qualified
name and duration to generate sequences
in states-sequence format (STS).

A sample of our data in STS format is in Figure 1.

Id STS Sequence

24 358 358 358 358 358 359

7 1 1 1 1 1 1

Figure 1: Participants 24 & 7’s first 6 source code ele-
ments in STS format for Task 1
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Figure 2: Task 1 entropy
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Figure 3: Task 1 turbulence
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These two components explain 34.71 % of the point variability.
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Figure 4: Task 1 LCS metric k-means
2 cluster
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Figure 5: Task 2 entropy
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Figure 6: Task 2 turbulence
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These two components explain 37.68 % of the point variability.
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Figure 7: Task 2 LCS metric k-means
2 cluster

EXPERIMENT

STS Format

Label Data

TraMineR [2]

Data

Entropy Turbulence

Similarity

CONCLUSIONS
• The more a bug requires fixing code across

multiple methods, classes, and files (Task 1)
the more distinct expert and novice eye gaze
sequences are.

• Results were mixed for Tasks 2 and 3 with-
out clear distinctions between experts and
novices. Entropy and turbulence patterns
found in Task 1 were contradicted in these
tasks.

• Out of the three similarity metrics we used,
Longest Common Subsequence and Opti-
mal Matching clustered well for Task 1 and
Longest Common Prefix clustered poorly
over all tasks due to its dependence on the
longest common prefix of two sequences.

FUTURE WORK
• Analyze sequences of visited source code

lines per participant for the most viewed
methods in each task.

• Use other sequential analysis techniques to
explore the subsequences of source code
elements that define the similarity metric
clusters.

• Perform further statistical tests on entropy
and turbulence values.
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